ttjq.net
当前位置:首页 >> 直接开平方法的形式 >>

直接开平方法的形式

方程一边是含未知数的完全平方式,另一边是常数,即(ax+b)^2=c,a,b,c为常数

直接开平方法是解一元二次方程的方法之一.主要适用于没有一次项的一元二次方程. 例题:解: 1、2*(√2x-2)=12 (√2x-2)=6 所以(√2x-2=±√6 √2x=2±√6 所以x=√2±√3 2、4*(3x-1)-9(3x+1)=0 4(3x-1)=9(3x+1) 所以(3x-1)/(3x+1)=9/4 即(3x-1)/(3x+1)=3/2 解:x=-5/3 或(3x-1)/(3x+1)=-3/2 或 解x=-1/15

应该是解一元二次方程的方法吧?这几种方法各有优点: 1、直接开平方法:在形如(ax+b) =c的时候用它最好! 2、因式分解法:前提条件是给定的方程

变形得:(3x-1)2=,两边直接开平方得:3x-1=或3x-1=-,解得:x1=,x2=-.分析:先变形,使其成为x2=a的形式,再应用直接开平方法解答即可.点评:此题主要考查了解一元二次方程的方法,只要经过变形可以转

拜托三楼的,人家要的是直接开方法,你说的是因式分解法好吧直接开方法其实都算不上的方法,配方法,公式法,因式分解法(这个局限性很大)才是平时用的方法,直接开方法针对的是没有一次项的一元二次方程,比如:3x=9,x=±√3 ,但是3x+x=9就不可以用直接开方法,所以不用单另讲这种方法,几乎用不到的.我自己打的,希望对你有帮助,请采纳.

解:适用于一元二次方程,形如x^2=d(d>=0)求常数d的范围,d=x^2,d是这个一元二次方程的应变量,d的范围是这个一元二次方程应变量的取值范围,即二次方程的值域,a=1>0,开口向上,所以函数有最小值,x=0,dmin=0^2=0,d>=dmin=0,d

1、同学,求解一元二次方程ax^+bx+c=0有一个通解的:这里用到韦达定理:(你不需要知道怎么来的,记住就可以.)也就是2、还有很快的解答方法就是:十字相乘法3、平方根这个解释就简单,我不介绍了!(这是可以直接开平方解答的)比如(x+1)^=9两边都开方就是x+1=3或者x+1=-3(注意这有个是-3)答案就很明显啦!

利用平方根的意义比如:(x+1) =9x+1=±√9x+1=±3x=±3-1x1=-4,x2=2说明:平方根的定义:若x =a(a≥0),则x是a的平方根,即x=±√a

一元二次方程有四种解 法:1、直接开平方法;2、配方法;3、公式法;4、因式分解法. 二、方法、例题精讲: 1、直接开平方法: 直接开平方法就是用直接开平方求解一元二次方程的方法.用直接开平方法解形如(x-m)2=n (n≥0)的 方程,

这都是解一元二次方程的解法.直接开平方法是:等号前面是完全平方式,等号后面是正常数.如如(x-4)^2=9;因式分解法是等号左边分解成两个因式的积,右边是0.如(*一2)(x+3)=0的形式;公式法是将方程中二次项系数、一次项糸数、常数项代入求根公式去解.

网站首页 | 网站地图
All rights reserved Powered by www.ttjq.net
copyright ©right 2010-2021。
内容来自网络,如有侵犯请联系客服。zhit325@qq.com